Heteroestructuras de Materiales 2D: Abriendo Caminos en la Nanotecnología del Futuro
pdf

Palabras clave

Ciencia de Materiales
Materiales Bidimendionales
Nanotecnología

Categorías

Cómo citar

Acosta Morales, S. (2025). Heteroestructuras de Materiales 2D: Abriendo Caminos en la Nanotecnología del Futuro. AZCATL Revista De Divulgación En Ciencias, Ingeniería E Innovación, 3(3), 28–33. https://doi.org/10.24275/AZC2024B006

Resumen

Los nanomateriales bidimensionales (2D), compuestos por nanoláminas, exhiben propiedades electrónicas, ópticas y mecánicas excepcionales. Ejemplos notables incluyen el grafeno y los dicalcogenuros de metales de transición. A partir de estos materiales, se pueden crear heteroestructuras 2D-2D, que consisten en capas apiladas de diferentes nanomateriales 2D. Estas heteroestructuras integran las propiedades únicas de cada material, lo que las posiciona como candidatos prometedores para revolucionar el desarrollo de dispositivos avanzados, incluidos diodos emisores de luz, transistores, ropa inteligente, celdas solares y sensores.

https://doi.org/10.24275/AZC2024B006
pdf

Citas

Referencias

Acosta, S., Pérez-Luna, V., Sánchez-Balderas, G., Hernández-Meza, J. M., Yáñez-Soto, B., y Quintana, M. (2023). Wetting properties of thin films of exfoliated hexagonal boron nitride in different solvents. Revista Mexicana de Física, 69(4 Jul-Aug), 041607 1-6-041607 1–6. https://doi.org/10.31349/REVMEXFIS.69.041607

Acosta, Selene, Ojeda-Galván, H. J., y Quintana, M. (2023). 2D materials towards energy conversion processes in nanofluidics. Physical Chemistry Chemical Physics, 25(36), 24264 24277. https://doi.org/10.1039/D3CP00702B

Acosta, Selene, y Quintana, M. (2024). Chemically Functionalized 2D Transition Metal Dichalcogenides for Sensors. Sensors 2024, Vol. 24, Page 1817, 24(6), 1817. https://doi.org/10.3390/S24061817

Ares, P., y Novoselov, K. S. (2022). Recent advances in graphene and other 2D materials. Nano Materials Science, 4(1), 3 9. https://doi.org/10.1016/J.NANOMS.2021.05.002

Dean, C. R., Young, A. F., Meric, I., Lee, C., Wang, L., Sorgenfrei, S., … Hone, J. (2010). Boron nitride substrates for high-quality graphene electronics. Nature Nanotechnology 2010 5:10, 5(10), 722 726. https://doi.org/10.1038/nnano.2010.172

Geim, A. K., y Grigorieva, I. V. (2013). Van der Waals heterostructures. Nature 2013 499:7459, 499(7459), 419 425. https://doi.org/10.1038/nature12385

Giannazzo, F., Greco, G., Roccaforte, F., y Sonde, S. S. (2018). Vertical transistors based on 2D materials: Status and prospects. Crystals. https://doi.org/10.3390/cryst8020070

Gong, Y., Lin, J., Wang, X., Shi, G., Lei, S., Lin, Z., … Ajayan, P. M. (2014). Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nature Materials 2014 13:12, 13(12), 1135 1142. https://doi.org/10.1038/nmat4091

Gusmão, R., Sofer, Z., y Pumera, M. (2017). Black Phosphorus Rediscovered: From Bulk Material to Monolayers. Angewandte Chemie International Edition, 56(28), 8052 8072. https://doi.org/10.1002/ANIE.201610512

Hou, H. L., Anichini, C., Samorì, P., Criado, A., y Prato, M. (2022). 2D Van der Waals Heterostructures for Chemical Sensing. Advanced Functional Materials. https://doi.org/10.1002/adfm.202207065

Huang, H. H., Fan, X., Singh, D. J., y Zheng, W. T. (2020). Recent progress of TMD nanomaterials: phase transitions and applications. Nanoscale, 12(3), 1247 1268. https://doi.org/10.1039/C9NR08313H

Islam, M. R., Afroj, S., y Karim, N. (2023). Scalable Production of 2D Material Heterostructure Textiles for High-Performance Wearable Supercapacitors. ACS Nano, 17(18). https://doi.org/10.1021/acsnano.3c06181

Kumbhakar, P., Chowde Gowda, C., Mahapatra, P. L., Mukherjee, M., Malviya, K. D., Chaker, M., … Tiwary, C. S. (2021). Emerging 2D metal oxides and their applications. Materials Today, 45, 142 168. https://doi.org/10.1016/J.MATTOD.2020.11.023

Li, Z., Yao, Z., Haidry, A. A., Luan, Y., Chen, Y., Zhang, B. Y., … Ou, J. Z. (2021). Recent advances of atomically thin 2D heterostructures in sensing applications. Nano Today. https://doi.org/10.1016/j.nantod.2021.101287

Liao, W., Huang, Y., Wang, H., y Zhang, H. (2019). Van der Waals heterostructures for optoelectronics: Progress and prospects. Applied Materials Today. https://doi.org/10.1016/j.apmt.2019.07.004

Liu, Y., Weiss, N. O., Duan, X., Cheng, H. C., Huang, Y., y Duan, X. (2016). Van der Waals heterostructures and devices. Nature Reviews Materials. https://doi.org/10.1038/natrevmats.2016.42

Liu, Z., Song, L., Zhao, S., Huang, J., Ma, L., Zhang, J., … Ajayan, P. M. (2011). Direct growth of graphene/hexagonal boron nitride stacked layers. Nano Letters, 11(5). https://doi.org/10.1021/nl200464j

Miwa, J. A., Dendzik, M., Grønborg, S. S., Bianchi, M., Lauritsen, J. V., Hofmann, P., y Ulstrup, S. (2015). Van der Waals Epitaxy of Two-Dimensional MoS2-Graphene Heterostructures in Ultrahigh Vacuum. ACS Nano, 9(6). https://doi.org/10.1021/acsnano.5b02345

Molaei, M. J., Younas, M., y Rezakazemi, M. (2022). Van der Waals heterostructures in ultrathin 2D solar cells: State-of-the-art review. Materials Science and Engineering: B. https://doi.org/10.1016/j.mseb.2022.115936

Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., … Firsov, A. A. (2004). Electric field in atomically thin carbon films. Science, 306(5696), 666 669. https://doi.org/10.1126/SCIENCE.1102896/SUPPL_FILE/NOVOSELOV.SOM.PDF

Novoselov, K. S., Mishchenko, A., Carvalho, A., y Castro Neto, A. H. (2016). 2D materials and van der Waals heterostructures. Science, 353(6298). https://doi.org/10.1126/SCIENCE.AAC9439/ASSET/37D227A0-A4A2-45A7-A10A-9F45126B919B/ASSETS/GRAPHIC/353_AAC9439_FA.JPEG

Sakthivel, R., Keerthi, M., Chung, R. J., y He, J. H. (2023). Heterostructures of 2D materials and their applications in biosensing. Progress in Materials Science. https://doi.org/10.1016/j.pmatsci.2022.101024

Shanmugam, V., Mensah, R. A., Babu, K., Gawusu, S., Chanda, A., Tu, Y., … Neisiany, R. E. (2022). A Review of the Synthesis, Properties, and Applications of 2D Materials. Particle & Particle Systems Characterization, 39(6), 2200031. https://doi.org/10.1002/PPSC.202200031

Wang, L., Huang, L., Tan, W. C., Feng, X., Chen, L., Huang, X., y Ang, K. W. (2018). 2D Photovoltaic Devices: Progress and Prospects. Small Methods. https://doi.org/10.1002/SMTD.201700294

Wang, P., Jia, C., Huang, Y., y Duan, X. (2021). Van der Waals Heterostructures by Design: From 1D and 2D to 3D. Matter, 4(2), 552 581. https://doi.org/10.1016/J.MATT.2020.12.015

Wang, S., Wang, X., y Warner, J. H. (2015). All chemical vapor deposition growth of MoS2:h-BN vertical van der Waals heterostructures. ACS Nano, 9(5). https://doi.org/10.1021/acsnano.5b00655

Xie, J., Zhang, Y., Dai, J., Xie, Z., Xue, J., Dai, K., … Zheng, Q. (2023). Multifunctional MoSe2@MXene Heterostructure-Decorated Cellulose Fabric for Wearable Thermal Therapy. Small, 19(9). https://doi.org/10.1002/smll.202205853

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

Descargas

Los datos de descargas todavía no están disponibles.