Resumen
Una de las ramas de investigación en materiales se enfoca en el desarrollo de vidrios ópticos que tiene como objetivo el mejorar dispositivos amplificadores, láseres y sensores presentes en las actividades de la vida cotidiana como lo son los sistemas de comunicación. Cuando estos vidrios son modificados con algunos elementos de la tabla periódica, llamados tierras raras, mejora notablemente la eficiencia en la emisión de energía luminosa. Esta tecnología es esencial para avances en telecomunicaciones como es el caso del internet por fibra óptica.
Citas
Abdul, H. H., Ahmad, Y. A., Mohd, M. S. F. y Badron, K. (2025). Latency performance evaluation of LEO Starlink and SES-12 GEO HTS network under tropical conditions. Journal of Network and Computer Applications, 215, 103-115. https://journals.iium.edu.my/ejournal/index.php/iiumej/article/view/3653
ADSLZone. (2023). El mapa de los cables submarinos de internet: así viajan tus datos por el mundo. https://www.adslzone.net/reportajes/internet/mapa-cables-submarinos/
Atwood, D. A. (2012). The rare earth elements: fundamental and applications. Wiley.
Flores, F. L., Medina, D. Y., Aldaya, I. y Pérez, G. G. (2022). Characterization of the optical gain in erbium-ytterbium-doped zinc and sodium-zinc phosphate glasses. Optical Materials Express, 12(11), 4491-4498. https://doi.org/10.1364/OME.471665
Grimado, P. B. (1991). Dynamic characteristics of aerial fiber optic cable. Optical Engineering, 30(6), 761-768. https://doi.org/10.1117/12.55862
Kushwah, R. S. y Singhai, J. (2019). Technological advancement in industrial satellite systems for achieving minimized propagation delay. International Journal of Computer Networks & Communications, 11(6), 47-59.
Li, M. J. y Nolan, D. A. (2008). Journal of Lightwave Technology, 26(9), 1079-1092. https://www.researchgate.net/publication/3244500_Optical_Transmission_Fiber_Design_Evolution
Liu, X. (2019). Evolution of fiber-optic transmission and networking toward the 5G era. iScience, 22, 489-506. https://pmc.ncbi.nlm.nih.gov/articles/PMC6920305/
Moguš-Milankovic´, A., Pavic´, L., Reis, S. T., Day, D. E. y Ivanda, M. (2010). Structural and electrical properties of Li2O–ZnO–P2O5 glasses. Journal of Non-Crystalline Solids, 356(13), 715-719. https://www.researchgate.net/publication/258406269_Structural_and_Electrical_Properties_of_Li2O-ZnO-P2O5_Glasses
Rivera, F. L. F., Pérez, G. G., Medina, D. Y., Aldaya, I., López, R. E., de Abreu, L. I. y Caldiño, U. (2025). Analysis of optical gain and attenuation coefficient in erbium-ytterbium-doped sodium-zinc phosphate glasses for integrated photonics applications. Ceramics International, 51(3), 4125-4135. https://www.researchgate.net/publication/385966728_Analysis_of_optical_gain_and_attenuation_coefficient_in_erbium-ytterbium-doped_sodium-zinc_phosphate_glasses_for_integrated_photonics_applications
Silva, A. M. B., Correia, R. N., Oliveira, J. M. M. y Fernández, M. H. V. (2010). Structural characterization of TiO2–P2O5–CaO glasses by spectroscopy. Journal of the European Ceramic Society, 30(6), 1253-1258. https://www.researchgate.net/publication/223728292_Structural_characterization_of_TiO2-P2O5-CaO_glasses_by_spectroscopy
TeleGeography. (2024). Submarine cable map. https://www.submarinecablemap.com/
Vaseli, H., Hashemian, L., Bayat, A., Gay, L., Williams, I. y Melzer, J. (2017). Evaluation of fiber optic installation methods, a case study on micro-trenching in Alberta, Canada. FACETS, 2(2), 642-659. https://doi.org/10.1139/facets-2016-0043
Zhou, X., Liu, H., Urata, R. y Zebian, S. (2018). Scaling large data center interconnects: challenges and solutions. Optical Fiber Technology, 44, 61-68. https://www.researchgate.net/publication/320570448_Scaling_large_data_center_interconnects_Challenges_and_solutions
ZMS Cable. (2023). ¿Cómo se coloca un cable de fibra óptica submarina? https://zmscable.es/como-colocar-fibra-optica-submarina/

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Derechos de autor 2025 Universidad Autónoma Metropolitana
