Abstract
This research implements an artificial intelligence (AI) model to protect an embedded system, represented by a mobile robot with a Raspberry Pi, against cyberattacks. The methodology includes system design, the development of a cyberattack test environment, and the integration of a lightweight AI model trained to detect and mitigate threats. The experiments evaluate the system’s effectiveness in detecting attacks, response time, and impact on the performance of resource-constrained hardware. The approach is validated for use in other embedded (IoT) devices, ensuring its viability in critical applications.
References
Ahda, A., Wulandari, C., Husellvi, H. P., Alhuda, M. Y., Reda, M., Zahwa, P. y Ananda, S. (2023). Information security implementation of DDoS attack using hping3 tools. Journal of Computer Science, 1(4).
Álvarez, A. F. (2024). Estado del arte de técnicas de inteligencia artificial que aporten en la ciberseguridad [Tesis de ingeniería]. Universidad Politécnica Salesiana.
Ayerbe, A. (2020). La ciberseguridad y su relación con la inteligencia artificial. Real Instituto Elcano, 128.
Chaudhary, A. y Kumar, K. (24-28 de junio de 2024). Vulnerability Analysis of WPA Security Protocols. 15th International IEEE Conference on Computing Communication and Networking Technologies, Mandy, India.
Colque, S. I. J. (2020). Escáner de vulnerabilidades aplicando Nessus. Revista Ciencia y Tecnología Informática, 1(1), 5-10.
David, R., Duke, J., Jain, A., Janapa Reddi, V., Jeffries, N., Li, J., ... Rhodes, R. (2021). Tensorflow lite micro: embedded machine learning for tinyml systems. Proceedings of Machine Learning and Systems, 3, 800-811.
Demosthenous, G. y Vassiliades, V. (2021). Continual learning on the edge with tensorflow lite. Arxiv.
Dempsey, K. L., Witte, G. A. y Rike, D. (2014). Summary of NIST sp 800-53, revision 4, security and privacy controls for federal information systems and organizations. Computer Security Division-National Institute of Standards and Technology.
Guembe, B., Azeta, A., Misra, S., Osamor, V. C., Fernandez-Sanz, L. y Pospelova, V. (2022). The emerging threat of ai-driven cyber attacks: a review. Applied Artificial Intelligence, 36(1).
Hladun, I. (2024). Embedded AI systems: a guide to integrating ML in embedded systems. Waverley. https://waverleysoftware.com/blog/embedded-ai-systems-guide/
Kaur, R., Gabrijelčič, D. y Klobučar, T. (2023). Artificial intelligence for cybersecurity: literature review and future research directions. International Journal on Information Fusion, 97. https://doi.org/10.1016/j.inffus.2023.101804
Li, J. H. (2018). Cyber security meets artificial intelligence: a survey. Frontiers of Information Technology & Electronic Engineering, 19(12), 1462-1474.
Ma, J., Chen, L. y Gao, Z. (2018). Hardware implementation and optimization of Tiny-YOLO network. En G. Zhai, J. Zhou, H. Yang, P. An y X. Yang (Eds.), Digital TV and wireless multimedia communication. Springer.
Raj, S. y Walia, N. K. (2-4 de julio de 2020). A study on metasploit framework: a pen-testing tool. 2020 International Conference on Computational Performance Evaluation, Shillong, India.
Zhang, Z. y Li, J. (2023). A review of artificial intelligence in embedded systems. Micromachines, 14(5), p. 897. https://doi.org/10.3390/mi14050897

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright (c) 2025 Universidad Autónoma Metropolitana